Copied to
clipboard

G = C32.20He3order 243 = 35

4th central extension by C32 of He3

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C32.20He3, C33.20C32, C32.63- 1+2, (C3×C9)⋊3C9, C32⋊C9.6C3, C32.9(C3×C9), (C32×C9).4C3, C3.5(C32⋊C9), C3.1(He3⋊C3), C3.1(C3.He3), SmallGroup(243,15)

Series: Derived Chief Lower central Upper central Jennings

C1C32 — C32.20He3
C1C3C32C33C32×C9 — C32.20He3
C1C3C32 — C32.20He3
C1C32C33 — C32.20He3
C1C32C33 — C32.20He3

Generators and relations for C32.20He3
 G = < a,b,c,d,e | a3=b3=d3=1, c3=b-1, e3=a, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=bcd-1, ede-1=b-1d >

3C3
3C3
3C3
3C32
3C32
3C32
3C9
3C9
3C9
9C9
9C9
9C9
3C3×C9
3C3×C9
3C3×C9
3C3×C9
3C3×C9
3C3×C9

Smallest permutation representation of C32.20He3
On 81 points
Generators in S81
(1 38 35)(2 39 36)(3 40 28)(4 41 29)(5 42 30)(6 43 31)(7 44 32)(8 45 33)(9 37 34)(10 76 23)(11 77 24)(12 78 25)(13 79 26)(14 80 27)(15 81 19)(16 73 20)(17 74 21)(18 75 22)(46 60 68)(47 61 69)(48 62 70)(49 63 71)(50 55 72)(51 56 64)(52 57 65)(53 58 66)(54 59 67)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 79 76)(74 80 77)(75 81 78)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(1 38 35)(2 39 36)(3 40 28)(4 41 29)(5 42 30)(6 43 31)(7 44 32)(8 45 33)(9 37 34)(10 79 20)(11 80 21)(12 81 22)(13 73 23)(14 74 24)(15 75 25)(16 76 26)(17 77 27)(18 78 19)(46 57 71)(47 58 72)(48 59 64)(49 60 65)(50 61 66)(51 62 67)(52 63 68)(53 55 69)(54 56 70)
(1 75 48 38 22 62 35 18 70)(2 26 71 39 13 49 36 79 63)(3 17 55 40 74 72 28 21 50)(4 78 51 41 25 56 29 12 64)(5 20 65 42 16 52 30 73 57)(6 11 58 43 77 66 31 24 53)(7 81 54 44 19 59 32 15 67)(8 23 68 45 10 46 33 76 60)(9 14 61 37 80 69 34 27 47)

G:=sub<Sym(81)| (1,38,35)(2,39,36)(3,40,28)(4,41,29)(5,42,30)(6,43,31)(7,44,32)(8,45,33)(9,37,34)(10,76,23)(11,77,24)(12,78,25)(13,79,26)(14,80,27)(15,81,19)(16,73,20)(17,74,21)(18,75,22)(46,60,68)(47,61,69)(48,62,70)(49,63,71)(50,55,72)(51,56,64)(52,57,65)(53,58,66)(54,59,67), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,38,35)(2,39,36)(3,40,28)(4,41,29)(5,42,30)(6,43,31)(7,44,32)(8,45,33)(9,37,34)(10,79,20)(11,80,21)(12,81,22)(13,73,23)(14,74,24)(15,75,25)(16,76,26)(17,77,27)(18,78,19)(46,57,71)(47,58,72)(48,59,64)(49,60,65)(50,61,66)(51,62,67)(52,63,68)(53,55,69)(54,56,70), (1,75,48,38,22,62,35,18,70)(2,26,71,39,13,49,36,79,63)(3,17,55,40,74,72,28,21,50)(4,78,51,41,25,56,29,12,64)(5,20,65,42,16,52,30,73,57)(6,11,58,43,77,66,31,24,53)(7,81,54,44,19,59,32,15,67)(8,23,68,45,10,46,33,76,60)(9,14,61,37,80,69,34,27,47)>;

G:=Group( (1,38,35)(2,39,36)(3,40,28)(4,41,29)(5,42,30)(6,43,31)(7,44,32)(8,45,33)(9,37,34)(10,76,23)(11,77,24)(12,78,25)(13,79,26)(14,80,27)(15,81,19)(16,73,20)(17,74,21)(18,75,22)(46,60,68)(47,61,69)(48,62,70)(49,63,71)(50,55,72)(51,56,64)(52,57,65)(53,58,66)(54,59,67), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,38,35)(2,39,36)(3,40,28)(4,41,29)(5,42,30)(6,43,31)(7,44,32)(8,45,33)(9,37,34)(10,79,20)(11,80,21)(12,81,22)(13,73,23)(14,74,24)(15,75,25)(16,76,26)(17,77,27)(18,78,19)(46,57,71)(47,58,72)(48,59,64)(49,60,65)(50,61,66)(51,62,67)(52,63,68)(53,55,69)(54,56,70), (1,75,48,38,22,62,35,18,70)(2,26,71,39,13,49,36,79,63)(3,17,55,40,74,72,28,21,50)(4,78,51,41,25,56,29,12,64)(5,20,65,42,16,52,30,73,57)(6,11,58,43,77,66,31,24,53)(7,81,54,44,19,59,32,15,67)(8,23,68,45,10,46,33,76,60)(9,14,61,37,80,69,34,27,47) );

G=PermutationGroup([[(1,38,35),(2,39,36),(3,40,28),(4,41,29),(5,42,30),(6,43,31),(7,44,32),(8,45,33),(9,37,34),(10,76,23),(11,77,24),(12,78,25),(13,79,26),(14,80,27),(15,81,19),(16,73,20),(17,74,21),(18,75,22),(46,60,68),(47,61,69),(48,62,70),(49,63,71),(50,55,72),(51,56,64),(52,57,65),(53,58,66),(54,59,67)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,79,76),(74,80,77),(75,81,78)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(1,38,35),(2,39,36),(3,40,28),(4,41,29),(5,42,30),(6,43,31),(7,44,32),(8,45,33),(9,37,34),(10,79,20),(11,80,21),(12,81,22),(13,73,23),(14,74,24),(15,75,25),(16,76,26),(17,77,27),(18,78,19),(46,57,71),(47,58,72),(48,59,64),(49,60,65),(50,61,66),(51,62,67),(52,63,68),(53,55,69),(54,56,70)], [(1,75,48,38,22,62,35,18,70),(2,26,71,39,13,49,36,79,63),(3,17,55,40,74,72,28,21,50),(4,78,51,41,25,56,29,12,64),(5,20,65,42,16,52,30,73,57),(6,11,58,43,77,66,31,24,53),(7,81,54,44,19,59,32,15,67),(8,23,68,45,10,46,33,76,60),(9,14,61,37,80,69,34,27,47)]])

C32.20He3 is a maximal subgroup of   C9⋊S33C9  (C3×C9)⋊3D9  (C3×C9)⋊6D9

51 conjugacy classes

class 1 3A···3H3I···3N9A···9R9S···9AJ
order13···33···39···99···9
size11···13···33···39···9

51 irreducible representations

dim11113333
type+
imageC1C3C3C9He33- 1+2He3⋊C3C3.He3
kernelC32.20He3C32⋊C9C32×C9C3×C9C32C32C3C3
# reps1621824612

Matrix representation of C32.20He3 in GL4(𝔽19) generated by

11000
0100
0010
0001
,
1000
01100
00110
00011
,
11000
0900
0090
0004
,
1000
0100
00110
0007
,
5000
0010
0001
0100
G:=sub<GL(4,GF(19))| [11,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,11,0,0,0,0,11,0,0,0,0,11],[11,0,0,0,0,9,0,0,0,0,9,0,0,0,0,4],[1,0,0,0,0,1,0,0,0,0,11,0,0,0,0,7],[5,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0] >;

C32.20He3 in GAP, Magma, Sage, TeX

C_3^2._{20}{\rm He}_3
% in TeX

G:=Group("C3^2.20He3");
// GroupNames label

G:=SmallGroup(243,15);
// by ID

G=gap.SmallGroup(243,15);
# by ID

G:=PCGroup([5,-3,3,-3,3,-3,135,121,546,1352]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=d^3=1,c^3=b^-1,e^3=a,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b*c*d^-1,e*d*e^-1=b^-1*d>;
// generators/relations

Export

Subgroup lattice of C32.20He3 in TeX

׿
×
𝔽